Paper Reference(s)

6684/01 Edexcel GCE

Statistics S2

Advanced Level

Monday 22 June 2015 – Morning

Time: 1 hour 30 minutes

<u>Materials required for examination</u> Mathematical Formulae (Pink) Items included with question papers Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulas stored in them.

Instructions to Candidates

In the boxes on the answer book, write the name of the examining body (Edexcel), your centre number, candidate number, the unit title (Statistics S2), the paper reference (6684), your surname, other name and signature.

Values from the statistical tables should be quoted in full. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has 7 questions. The total mark for this paper is 75.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

P44846A This publication may only be reproduced in accordance with Edexcel Limited copyright policy. ©2015 Edexcel Limited

- 1. In a survey it is found that barn owls occur randomly at a rate of 9 per 1000 km^2 .
 - (*a*) Find the probability that in a randomly selected area of 1000 km² there are at least 10 barn owls.
 - (b) Find the probability that in a randomly selected area of 200 km² there are exactly 2 barn owls.
 - (c) Using a suitable approximation, find the probability that in a randomly selected area of 50 000 km² there are at least 470 barn owls.

(6)

(2)

(3)

2. The proportion of houses in Radville which are unable to receive digital radio is 25%. In a survey of a random sample of 30 houses taken from Radville, the number, *X*, of houses which are unable to receive digital radio is recorded.

(*a*) Find $P(5 \le X \le 11)$.

(3)

A radio company claims that a new transmitter set up in Radville will reduce the proportion of houses which are unable to receive digital radio. After the new transmitter has been set up, a random sample of 15 houses is taken, of which 1 house is unable to receive digital radio.

(b) Test, at the 10% level of significance, the radio company's claim. State your hypotheses clearly.

(5)

3. A random variable *X* has probability density function given by

$$f(x) = \begin{cases} kx^2 & 0 \le x \le 2\\ k\left(1 - \frac{x}{6}\right) & 2 < x \le 6\\ 0 & \text{otherwise} \end{cases}$$

where k is a constant.

4. The continuous random variable L represents the error, in metres, made when a machine cuts poles to a target length. The distribution of L is a continuous uniform distribution over the interval [0, 0.5].

(a) Find
$$P(L < 0.4)$$
. (1)

(b) Write down
$$E(L)$$
.

(c) Calculate Var(L).

A random sample of 30 poles cut by this machine is taken.

(*d*) Find the probability that fewer than 4 poles have an error of more than 0.4 metres from the target length.

(3)

When a new machine cuts poles to a target length, the error, X metres, is modelled by the cumulative distribution function F(x) where

$$F(x) = \begin{cases} 0 & x < 0\\ 4x - 4x^2 & 0 \le x \le 0.5\\ 1 & \text{otherwise} \end{cases}$$

(*e*) Using this model, find P(X > 0.4).

(2)

A random sample of 100 poles cut by this new machine is taken.

(f) Using a suitable approximation, find the probability that at least 8 of these poles have an error of more than 0.4 metres.

(3)

- 5. *Liftsforall* claims that the lift they maintain in a block of flats breaks down at random at a mean rate of 4 times per month. To test this, the number of times the lift breaks down in a month is recorded.
 - (a) Using a 5% level of significance, find the critical region for a two-tailed test of the null hypothesis that 'the mean rate at which the lift breaks down is 4 times per month'. The probability of rejection in each of the tails should be as close to 2.5% as possible.

(3)

Over a randomly selected 1 month period the lift broke down 3 times.

- (b) Test, at the 5% level of significance, whether *Liftsforall*'s claim is correct. State your hypotheses clearly.
- (c) State the actual significance level of this test.

(1)

(2)

The residents in the block of flats have a maintenance contract with *Liftsforall*. The residents pay *Liftsforall* \pounds 500 for every quarter (3 months) in which there are at most 3 breakdowns. If there are 4 or more breakdowns in a quarter then the residents do not pay for that quarter.

Liftsforall installs a new lift in the block of flats.

Given that the new lift breaks down at a mean rate of 2 times per month,

(d) find the probability that the residents do not pay more than $\pounds 500$ to *Liftsforall* in the next year.

(6)

6. A continuous random variable X has probability density function f(x) where

$$f(x) = \begin{cases} kx^n & 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

where *k* and *n* are positive integers.

(a) Find k in terms of n .	(3)
(b) Find $E(X)$ in terms of n .	(3)
(c) Find $E(X^2)$ in terms of n .	(3)
Given that $n = 2$,	(2)
(d) find $Var(3X)$.	(3)

7. A bag contains a large number of 10p, 20p and 50p coins in the ratio 1 : 2 : 2.

A random sample of 3 coins is taken from the bag.

Find the sampling distribution of the median of these samples.

(7)

TOTAL FOR PAPER: 75 MARKS

END

Question Number	Scheme	2	Marks
		notes	
1. (a)	P(N > 10) - 1 - P(N < 0)	M1: using or writing $1 - P(N \le 9)$ or	N/1 A 1
	$1(10 \ge 10) - 1 - 1(10 \ge 9)$	1 - P(N < 10)	MIAI
	= 0.4126	A1: awrt 0.413	

		notes	
1. (a)	$P(N \ge 10) = 1 - P(N \le 9)$	M1: using or writing $1 - P(N \le 9)$ or $1 - P(N < 10)$	M1 A1
	= 0.4126	A1: awrt 0.413	
(b)	<i>Y</i> represents number of owls per 200 km ² \Rightarrow <i>Y</i> ~ Po(1.8)	B1: using or writing Po(1.8)	B1
	$P(Y=2) = \frac{e^{-1.8}1.8^2}{2!}$	M1 : for a single term of the form $\frac{e^{-\lambda}\lambda^2}{2!}$ with any value for λ or $P(X \le 2) - P(X \le 1)$	M1 A1

(c)	Normal approximation	M1: Using or writing, normal	M1
		approximation with mean = 450	
		M1: Using or writing the mean =	
	$\mu = 50 \times 9 = 450 \sigma^2 = 450$	variance. Does not need to be 450.	M1
	,	May be seen in the standardisation	
		calculation.	
		M1: $\pm \left(\frac{(470 \text{ or } 469.5 \text{ or } 470.5) - their \text{ mean}}{2} \right)$	
		(their sd)	M1
		May be implied by a correct answer	
		or $z = awrt 0.92$	
		M1: dep on previous method mark	
		being awarded. Using a continuity	
	P(X > 470) = 1 = p(-469.5 - 450)	correction 470 ± 0.5	
	$P(X \ge 4/0) \approx 1 - P Z <$	May be implied by a correct answer	
	(\sqrt{450})	or $z = awrt 0.92$	
		A1: correct standardisation no need to	dM1 A1
		subtract from 1. Award for	
		469.5-450	
		$\frac{1}{\sqrt{450}}$ or awrt 0.92 or a	
		√450	
		correct answer	
	= 0.1788	A1: awrt 0.179	A1
			(6)

Question Number	Schem	ie	Marks
2(a)		notes	
	$X \sim B(30, 0.25)$	B1: using B(30, 0.25)	B1
	$P(X \le 10) - P(X \le 4) = 0.8943 - 0.0979$	M1: using $P(X \le 10) - P(X \le 4)$ or $P(X \ge 5) - P(X \ge 11)$ oe	M1 A1
	= 0.7964	A1: awrt 0.796	
	NB a correct answer gains full marks	-	

(b)	$H_0: p = 0.25$ $H_1: p < 0.25$	B1: Both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a , must use <i>p</i> or <i>p</i> (<i>x</i>) or π	B1
	B(15, 0.25)	M1: for using B(15, 0.25)	
	$P(X \le 1) = 0.0802$	A1: awrt 0.0802 or CR $X \le 1$ (allow $P(X \ge 2) = 0.9198$)	M1 A1
	NB: Allow M1 A1 for a correct CR with no	incorrect working	
	Reject H ₀ or Significant or 1 lies in the critical region	M1: A correct statement – do not allow contradictory non contextual statements. Follow through their Probability/CR (for 1 or 2 tail test). If no H ₁ given then M0. Ignore their comparison. For a probabillity < 0.5, statement must be correct compared to 0.1 for 1 tail test and 0.05 for 2 tailed test or if the probability > 0.5, statement must be correct compared to 0.9 for 1 tail test and 0.95 for 2 tailed test.	dM1 A1cso
	There is evidence that the radio <u>company's</u>	A1: cso (all previous marks awarded)	
	claim is true.	and a correct statement containing the	
	Or	word company if writing about the	
	The new transmitter will reduce the	claim	
	proportion of nouses unable to receive <u>radio</u>	or rauto ir fuir context.	
			1

Number	Scheme		Marks
		Notes	
3(a)	$\int_{0}^{2} kx^{2} dx + \int_{2}^{6} k \left(1 - \frac{x}{6} \right) dx = 1$	M1: for adding the two integrals, and attempting to integrate, at least one integral $x^n \rightarrow x^{n+1}$, ignore limits and does not need to be put equal to 1. Do not award if they add before integrating	M1 A1
	$k\left[\frac{x^{3}}{3}\right]_{0}^{2} + k\left[x - \frac{x^{2}}{12}\right]_{2}^{6} = 1$	A1: correct integration, ignore limits and does not need to be put equal to 1	
	$k\left[\frac{8}{3}\right] + k\left[3 - \frac{5}{3}\right] = 1$ $4k = 1$	M1: dependent on first M being awarded, correct use of limits and putting equal to 1. This may be seen as $F(2) = \frac{8}{3}k$ and using $F(6) = 1$ A1: cso answer given so need $4k = 1$	dM1 A1cso
	$k = \frac{1}{4} *$	leading to $k = \frac{1}{4}$	
NB Validat mark they i	ion – if they substitute in $k = \frac{1}{4}$ you may award the must say " therefore $k = \frac{1}{4}$ "	e 1 st three marks as per scheme. For the Fi	nal A
(b)	2	B1: cao	B1
()			
(c)	$\int_0^x kt^2 dt = \frac{kx^3}{3}$	M1: attempting to find $\int_0^x kt^2 dt$ $t^2 \rightarrow t^3$, ignore limits, may leave in terms of k	M1
	$\int k \begin{pmatrix} 1 & t \end{pmatrix}_{dt} = k \begin{bmatrix} t & t^2 \end{bmatrix} + C$	M1: attempting to find $\int k(1-\frac{t}{-})dt$	
	$\int k \left(\frac{1-\frac{1}{6}}{6} \right) dt = k \left[\frac{1-\frac{1}{12}}{12} \right]^{+C}$ $= kt - k \frac{t^{2}}{12} + C$	at least one integral $t^n \rightarrow t^{n+1}$ and either have $+ C(C \neq 0)$ and use F(6) =1	M1
	$\int k \left(1 - \frac{1}{6} \right) dt = k \left[1 - \frac{1}{12} \right] + C$ $= kt - k \frac{t^2}{12} + C$ $F(6) = 1$	at least one integral $t^n \rightarrow t^{n+1}$ and either have $+ C (C \neq 0)$ and use F(6) =1 or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$	M1
	$\int k \left(1 - \frac{t}{6}\right) dt = k \left[1 - \frac{t}{12}\right] + C$ $= kt - k \frac{t^2}{12} + C$ $F(6) = 1$ $6k - 3k + C = 1 \therefore \ C = \frac{1}{4}$	at least one integral $t^n \rightarrow t^{n+1}$ and either have $+ C (C \neq 0)$ and use $F(6) = 1$ or have limits 2 and x and + "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$ NB: may use any letter, need not be t , condone use of x	M1
	$\int k \left(1 - \frac{1}{6}\right) dt = k \left[1 - \frac{1}{12}\right] + C$ $= kt - k \frac{t^{2}}{12} + C$ $F(6) = 1$ $6k - 3k + C = 1 \therefore C = \frac{1}{4}$ $F(x) \begin{cases} 0 & x < 0 \\ \frac{x^{3}}{12} & 0 \le x \le 2 \\ \frac{x}{4} - \frac{x^{2}}{48} + \frac{1}{4} & 2 < x \le 6 \\ 1 & x > 6 \end{cases}$ NB: Condensate of each	at least one integral $t^n \rightarrow t^{n+1}$ and either have $+ C (C \neq 0)$ and use $F(6) = 1$ or have limits 2 and x and $+$ "their $\int_0^2 kt^2 dt$ " and attempt to integrate $t^n \rightarrow t^{n+1}$ NB: may use any letter, need not be t ,condone use of x A1: second line correct A1: third line correct B1: first and fourth line correct they may use "otherwise" instead of $x < 0$ or $x > 6$ but not instead of both	M1 A1 A1 B1

Question Number	Scheme		Marks
(d)	$\frac{x}{4} - \frac{x^2}{48} + \frac{1}{4} = 0.75$	M1: putting their line 2 or their line 3 $= 0.75$	M1 A1
	$x^2 - 12x + 24 = 0$ oe	A1: The correct quadratic equation – like terms must be collected together	
	$x = \frac{12 \pm \sqrt{144 - 4 \times 24}}{2}$	M1d: dep on previous M1 being awarded. A correct method for solving a 3 term quadratic equation = 0 leading to $x =$ Use either the quadratic formula or completing the square - If they quote a correct formula and attempt to use it, award the method mark if there are small errors. Where the formula is not quoted, the method mark can be implied from correct working with values but is lost if there is a mistake. If they attempt to factorise award M1 if they have $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $ leading to $x =$ May be implied by a correct value for x	dM1 A1
	$= 2.54 \text{ or } 6 - 2\sqrt{3}$	A1: awrt 2.54 or $6-2\sqrt{3}$ or $6-\sqrt{12}$. If 2 values for <i>x</i> are given they must eliminate the incorrect one.	

Question Number	Scheme	, ,	Marks
		Notes	
4 (a)	0.8	B1: cao	B1

(b) 0.25

B1: cao

B1

(c)	$\frac{(0.5-0)^2}{12} = \frac{1}{48} \text{ or awrt } 0.0208$	M1: for $\frac{(0.5\pm0)^2}{12}$ or for $\int_0^{0.5} 2x^2 dx - (\text{their } (b))^2 \text{ with some}$ integration $x^n \rightarrow x^{n+1}$ A1: $\frac{1}{48}$ or awrt 0.0208 or	M1A1
		awrt 2.08 $\times 10^{-2}$	

(d)	P($L > 0.4$) = 0.2	P($L < 0.4$) = 0.8	An awrt 0.123 award B1 M1 A1	
	<i>Y</i> ~ B(30, 0.2)	<i>Y</i> ~ B(30, 0.8)	B1: using or writing B(30, their P($L < 0.4$) or B(30, their P($L > 0.4$). If they have not written these probabilities in this part use answer from part (a) ie P($L < 0.4$) = (a) or P($L > 0.4$) = 1- (a)	B1
	$P(Y \le 3) = 0.1227$	$P(Y \ge 4) = 0.1227$	M1: dependent on previous B mark being awarded. Using B(30,P($L>0.4$) with P($Y \le 3$) written or used Or B(30 P($L<0.4$)) with P($Y \ge 4$) written or used A1: awrt 0.123	dM1A1
(e)	$1 - \left[4 \times 0.4 - 4 \times 0.4^{2}\right]$	$] = \frac{1}{25}$ or 0.04	M1: Using 1- F(0.4) or F(0.5) – F(0.4) or P($X \le 0.5$) – P($X \le 0.4$). Must see some substitution of 0.4 A1: $\frac{1}{25}$ or 0.04 only	M1A1
(f)	Po(4)		B1ft: using or writing Po(4) NB for ft they must either write $100 \times$ "their 0.04" and use Poison or write Po("their λ ") Allow P instead of Po	B1ft
	$P(X \ge 8) = 1 - P(X \le 7)$		M1 using or writing 1- P($X \le 7$) If using normal approximation, they must either write this or $\frac{7.5-4}{2}$ or $\frac{7.5-4}{\sqrt{3.84}}$ or $\frac{7.5-4}{\text{awrt }1.96}$ or $\frac{7.5-20}{\sqrt{16}}$	M1
	= 1 - 0.9489 = 0.0511		A1 awrt 0.0511	A1

Question Number	Scheme		Marks
		Notes	
5(a)	$X \sim Po(4)$ $P(X = 0) = 0.0183$ $P(X \ge 8) = 0.0511$ $P(X \le 1) = 0.0916$ $P(X \ge 9) = 0.0214$ $CR \ X = 0$ $X \ge 9$	M1: using Po(4), need to see a probability from Po(4), need not be one of the 4 given here. May be implied by a single correct CR A1: $X = 0$ or $X \le 0$ or $X < 1$ A1: $X \ge 9$ or $X > 8$ Any letter(s) may be used instead of X eg CR or Y or in words SC candidates who write P(X = 0) and P($X \ge 9$) award M1A1 A0 NB Candidates who write $8 < x \le 0$ oe	M1 A1 A1
		get M1A0A0	
(b)	H ₀ : $\lambda = 4$ H ₁ : $\lambda \neq 4$ There is evidence that <i>Liftsforall's</i> claim is true	B1: both hypotheses correct, labelled H_0 or NH or H_n and H_1 or AH or H_a may use λ or μ . These must be seen in part (b) B1: ft their CR only, Do not ft hypotheses.Needs to include the word <i>Liftsforall</i> . If no Critical region stated	B1 B1ft
	or There is insufficient evidence to doubt <i>Liftforall's</i> claim	in part (a) award B0 or $P(X \le 3) = awrt 0.434$ and a correct conclusion.	
(c)	0.0183 + 0.0214 = 0.0397	B1: Awrt 0.0397	B1
(c)	0.0183 + 0.0214 = 0.0397	B1: Awrt 0.0397	B1
(c) (d)	0.0183 + 0.0214 = 0.0397 $P(B \le 3 B \sim Po(6)) = 0.1512$	B1: Awrt 0.0397 M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151	B1 M1 A1
(c) (d)	0.0183 + 0.0214 = 0.0397 $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$	B1: Awrt 0.0397 M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p (1 - p)^3$ or $p^2(1 - p)^2$	B1 M1 A1 dB1ft
(c) (d)	0.0183 + 0.0214 = 0.0397 $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks	B1: Awrt 0.0397 M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1-p)^4$ or $p(1-p)^3$ or $p^2(1-p)^2$	B1 M1 A1 dB1ft
(c) (d)	0.0183 + 0.0214 = 0.0397 $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$	B1: Awrt 0.0397 M1: using Po(6) and writing or using P($B \le 3$) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p (1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P($B \ge 4$) oe A1: awrt 0.849	B1 M1 A1 dB1ft M1 A1
(c) (d)	$0.0183 + 0.0214 = 0.0397$ $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$	B1: Awrt 0.0397 M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p(1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$	B1 M1 A1 dB1ft M1 A1 dB1ft
(c) (d)	$0.0183 + 0.0214 = 0.0397$ $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If 0	B1: Awrt 0.0397 M1: using Po(6) and writing or using P($B \le 3$) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p(1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P($B \ge 4$) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$	B1 M1 A1 dB1ft M1 A1 dB1ft
(c) (d)	$0.0183 + 0.0214 = 0.0397$ $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1)$	B1: Awrt 0.0397 M1: using Po(6) and writing or using $P(B \le 3)$ oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p (1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using $P(B \ge 4)$ oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe	B1 M1 A1 dB1ft M1 A1 dB1ft M1
(c) (d)	$0.0183 + 0.0214 = 0.0397$ $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^{4} + 4 \times (1 - 0.1512)^{3} \times 0.1512$	B1: Awrt 0.0397 M1: using Po(6) and writing or using P($B \le 3$) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p (1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P($B \ge 4$) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$ M1: using or writing P($X = 0$) + P($X = 1$) oe M1: $(1 - p)^4 + 4 \times (1 - p)^3 \times p$ oe	B1 M1 A1 dB1ft M1 A1 dB1ft M1 dM1
(c) (d)	$0.0183 + 0.0214 = 0.0397$ $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ $If 0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889$	B1: Awrt 0.0397 M1: using Po(6) and writing or using P($B \le 3$) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p(1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P($B \ge 4$) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$ M1: using or writing P($X = 0$) + P($X = 1$) oe M1: $(1 - p)^4 + 4 \times (1 - p)^3 \times p$ oe A1: awrt 0.889	B1 M1 A1 dB1ft M1 A1 dB1ft M1 dM1 A1
(c) (d)	$0.0183 + 0.0214 = 0.0397$ $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ $If 0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^{4} + 4 \times (1 - 0.1512)^{3} \times 0.1512 = 0.889 If 0.5$	B1: Awrt 0.0397 M1: using Po(6) and writing or using P($B \le 3$) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p(1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P($B \ge 4$) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$ M1: using or writing P($X = 0$) + P($X = 1$) oe M1: $(1 - p)^4 + 4 \times (1 - p)^3 \times p$ oe A1: awrt 0.889	B1 M1 A1 dB1ft M1 A1 dB1ft M1 dM1 A1
(c) (d)	$0.0183 + 0.0214 = 0.0397$ $P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889 If 0.5 P(Y \ge 3) = P(Y = 3) + P(Y = 4)$	B1: Awrt 0.0397 M1: using Po(6) and writing or using P(B \leq 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p(1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P(B \geq 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1 - p)^4 + 4 \times (1 - p)^3 \times p$ oe A1: awrt 0.889 M1: using or writing P(X = 3) + P(X = 4) oe	B1 M1 A1 dB1ft M1 A1 dB1ft dB1ft dM1 dM1 A1 M1
(c) (d)	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^{4} + 4 \times (1 - 0.1512)^{3} \times 0.1512 = 0.889 If 0.5 P(Y \ge 3) = P(Y = 3) + P(Y = 4) 4 \times (0.8488)^{3} \times 0.1512 + (0.8488)^{4}$	B1: Awrt 0.0397 M1: using Po(6) and writing or using P(B \leq 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p(1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P(B \geq 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1 - p)^4 + 4 \times (1 - p)^3 \times p$ oe A1: awrt 0.889 M1: using or writing P(X = 3) + P(X = 4) oe M1: $(p)^4 + 4 \times (p)^3 \times (1 - p)$ oe	B1 M1 A1 dB1ft M1 A1 dB1ft dB1ft dM1 dM1 dM1 dM1
(c) (d)	$P(B \le 3 B \sim Po(6)) = 0.1512$ $X \sim B(4, 0.1512)$ Alternative method for first 3 marks $P(B \ge 4 B \sim Po(6)) = 0.8488$ $Y \sim B(4, 0.849)$ If $0 P(X \le 1) = P(X = 0) + P(X = 1) (1 - 0.1512)^4 + 4 \times (1 - 0.1512)^3 \times 0.1512 = 0.889 If 0.5 P(Y \ge 3) = P(Y = 3) + P(Y = 4) 4 \times (0.8488)^3 \times 0.1512 + (0.8488)^4 = 0.889 sect answer implies full marks. Less the final 4$	B1: Awrt 0.0397 M1: using Po(6) and writing or using P(B \leq 3) oe. A1: awrt 0.151 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.151") for use they need $(1 - p)^4$ or $p(1 - p)^3$ or $p^2(1 - p)^2$ M1: using Po(6) and writing or using P(B \geq 4) oe A1: awrt 0.849 B1ft: dep on M1 being awarded. Using or writing B(4, "their 0.849") for use they need $(p)^4$ or $p^3(1 - p)$ or $p^2(1 - p)^2$ M1: using or writing P(X = 0) + P(X = 1) oe M1: $(1 - p)^4 + 4 \times (1 - p)^3 \times p$ oe A1: awrt 0.889 M1: using or writing P(X = 3) + P(X = 4) oe M1: $(p)^4 + 4 \times (p)^3 \times (1 - p)$ oe A1: awrt 0.889 mark if got awrt 0.889 and go on to do marked a mark if got awrt 0.889	B1 M1 A1 dB1ft M1 A1 dB1ft dB1ft M1 dM1 A1 M1 dM1 dM1 A1 re work

Question Number	Scheme		Marks	
	NR • All powers of 1 must be simplified for the $A_{course}(A)$ marks			
		notes		
6(a)	$\left[\frac{kx^{n+1}}{n+1}\right]_0^1 = 1$	M1: attempting to integrate $x^n \rightarrow x^{n+1}$ and putting equal to 1, ignore limits A1: correct integration	M1A1	
	k = n + 1	A1: $k = n + 1$ Do not accept $\frac{n+1}{1^{n+1}}$	A1	
(b)	$[kx^{n+2}]^1$	M1: Writing or using $\int_0^1 kx^{n+1} dx$, ignore limits. Allow $\int_0^1 kx(x)^n dx$		
	$\int_0^{\infty} kx^{n+1} dx = \left\lfloor \frac{n}{n+2} \right\rfloor_0$	Allow substitution of their k A1: correct integration $\frac{kx^{n+2}}{n+2}$	M1A1	
	$=\frac{n+1}{n+2}$	A1: correct answer only- must be in terms or n	Alcao	
(c)	$\int_0^1 kx^{n+2} dx = \left[\frac{kx^{n+3}}{n+3}\right]$ $= \frac{n+1}{n+3}$	M1: Attempting to integrate $\int_{0}^{1} kx^{n+2} dx, x^{n+2} \rightarrow x^{n+3}, \text{ ignore}$ limits. Do not allow substitution of k if it has x in it. This must be on its own with no extra bits added on. A1: correct answer only SC if they have $\frac{k}{n+2}$ as answer to part(b) award A1 for $\frac{k}{n+2}$	M1 A1cao	
		<i>n</i> + 3		
(d)	Var (X) = $\frac{3}{5} - \left(\frac{3}{4}\right)^2 = \frac{3}{80}$	M1: using "their(c)" – ["their(b)"] ² with $n = 2$ or correct Var(X) Using $\int_0^1 kx^4 dx - \left[\int_0^1 kx^3 dx\right]^2$ for Var(X)	M1	
	Var(3X) = 9 Var(X)	M1: for writing or using 9 Var (X) or 3^{2} Var(X)	M1	
	$=\frac{27}{80}$ oe or 0.3375 or 0.338	A1: cso	AICSO	

Question Number	Scheme		Marks
		Notes	
7	NB: If there is a fully correct table award full marks.		
	P(10) = 0.2, P(20) = 0.4 and $P(50) = 0.4$	B1: using $P(10) = 0.2 (p) P(20) =$ 0.4(q) and $P(50) = 0.4(r)$ may be seen in calculations or implied by a correct probability.	B1
	Median 10, 20, 50	B1: three correct medians and no	B1
	P(Median 10) = $0.2^3 + 3 \times 0.2^2 \times 0.4 + 3 \times 0.2^2 \times 0.4$	M1: allow if $(p+q+r)=1$ and use $n^3 + 3 \times n^2 \times q + 3 \times n^2 \times r$	
	or $0.2^3 + 3 \times 0.2^2 \times 0.8$	$ \begin{array}{c} p + 3 \times p \times q + 3 \wedge p \times r \\ \text{or} \\ n^3 + 3 \times n^2 \times (a+r) \end{array} $	
		$\begin{vmatrix} p + 5 \times p - 5 \times q + 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	
	P(Median 50) = $0.4^3 + 3 \times 0.4^2 \times 0.2 + 3 \times 0.4^2 \times 0.4$	M1: allow if $(p+q+r)=1$ and use $r^3 + 2 \times r^2 \times n + 3 \times r^2 \times q$	
	or $0.4^3 + 3 \times 0.4^2 \times 0.6$	$ \begin{array}{c} r + 3 \times r \times p + 3 \times r \times q \\ \mathbf{0r} \\ -^{3} + 2 \times r^{2} \times (n + q) \end{array} \end{array} $	See below for how
		Look for $\frac{8}{125} + \frac{12}{125} + \frac{24}{125}$	to award
	P(Median 20) =	M1: allow if $(p+q+r)=1$ and use	
	$3 \times 0.2 \times 0.4^{2} + 6 \times 0.2 \times 0.4 \times 0.4 + 0.4^{3} + 2 \times 0.4^{2} \times 0.4$	$3 \times p \times q^2 + 6 \times p \times q \times r + q^3 +$	
	3×0.4 ×0.4	$\begin{vmatrix} 3 \times q^2 \times r \\ 12 & 24 & 8 & 24 \end{vmatrix}$	
		$\frac{12}{125} + \frac{24}{125} + \frac{8}{125} + \frac{24}{125} = \underline{24}$	
	How to award the M marks – Allow the use	of 1, 2 and 5 for the medians for the	
	M1 any correct calculation (implied by correct P(m = 20) or $P(m = 50)$	answer) for $P(m = 10)$ or	
	M1 any 2 correct calculations (implied by 2 co P(m = 20) or $P(m = 50)$	prrect answers) $P(m = 10)$ or	
	M1 any 3 correct calculations (implied by 3 co 20) and $P(m = 50)$ or	prrect answers) for $P(m = 10)$ and $P(m =$	
	3 probabilities that add up to 1 providing it $1 - 2 - 2$	is $1 - $ their 2 other calculated	
	probabilities. Do not allow $\frac{1}{5} \frac{2}{5} \frac{2}{5}$		
	NB if they do not have a correct answer their w addition signs.	vorking must be clear including the	
	median 10 20 50	A1: awrt any 1 correct	A2
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	These do not need to be in a table as	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	the correct median(10, 20 & 50)	
		NB: Do Not allow the use of 1,2 and 5 for the medians for the A marks	